

CONTROLANDO AS TROCAS DE PADRÕES DE CORTE NUM PROBLEMA UNIDIMENSIONAL

FACULDADE DE CIÊNCIAS APLICADAS

Aluno: Mateus Pereira Martin Prof. Dr. Antonio Carlos Moretti

Agência Financiadora: CNPq PIBIC/UNICAMP

Palavras-Chave: PLI-Heurísticas-Corte e Empacotamento

INTRODUÇÃO

Neste projeto apresentamos um estudo introdutório sobre problemas de Corte e Empacotamento. Tal trabalho é justificado pela importância do problema estudado em indústrias, principalmente, de placas metálicas e de papel. A ênfase é dada no modelo matemático para minimizar, concomitantemente, o desperdício e o número de setup de máquina num problema de corte unidimensional.

A partir de modelos clássicos de Programação Linear Inteira como, por exemplo, o problema da Mochila, bem como uma heurística proposta por HAESSLER(1975), além do estudo teórico dos métodos, implementamos algoritmos referentes a modelagem do problema. E, assim, o objetivo é verificar a eficiência do algoritmo heurístico estudado, isto é, que apresenta soluções satisfatórias, não necessariamente ótimas, mas com tempos razoáveis de cálculo.

- Resumo da IC:
 - I. Estudo do Modelo proposto por HAESSLER(1975);
 - II. Implementação de tal Modelo.

Obs: A duração do projeto foi de 6 meses.

MODELO MATEMÁTICO

O problema matemático que representa a minimização do desperdício e do setup pode ser escrito da seguinte maneira:

$$Minimizar$$
 $c_1 \sum_{j=1}^n T_j x_j + c_2 \sum_{j=1}^n \delta_j(x_j)$ $sujeito\ a \sum_{j=1}^n a_{ij} x_j \geq d_i \ i=1,2,\ldots,m$ $x_j \geq 0$ e inteiro $j=1,2,\ldots n$

onde:

- a_{ij} =núm. de vezes em que o item i aparece no padrão de corte j;
- x_j =núm. de vezes que o rolo-mestre é cortado de acordo com o padrão de corte j;
- W=tamanho do rolo-mestre | w_i =tamanho item i da carteira de pedidos;
- $\bullet \quad \mathsf{T}_j = W \sum_{j=1}^m a_{ij} w_i;$
- $\delta_j = 1$ se padrão j for utilizado, 0 caso contrário;
- c_1 e c_2 são os custos associados a perda e setup, respectivamente.

A HEURÍSTICA E RESULTADOS

• A seguir, exibe-se bobinas de aço em máquinas de corte:



Figura 02 - Bobina de aço durante corte

• O modelo considerado neste estudo é apresentado abaixo:

$$\begin{aligned} & Minimiz ar \quad u - a_{m+1} \\ & sujeito \ a \quad \sum_{i=1}^m a_i w_i + a_{m+1} = W \\ & d_i u - a_i \leq 0 \\ & MINR \leq \sum_{i=1}^m a_i \leq MAXR \\ & min_i \leq a_i \leq max_i \\ & 0 \leq a_{m+1}, \quad u \geq 0 \\ & a \in \mathbb{Z}_+ \end{aligned}$$

• Tal heurística tem base no Problema da Mochila Inteiro e no modelo proposto por HAESSLER(1975). O intuito é resolver o problema de geração de padrões de corte, bem como de minimização de perda e setup.

• Foi elaborado uma rotina para avaliar diferentes problemas (diferentes largura de itens e demandas).

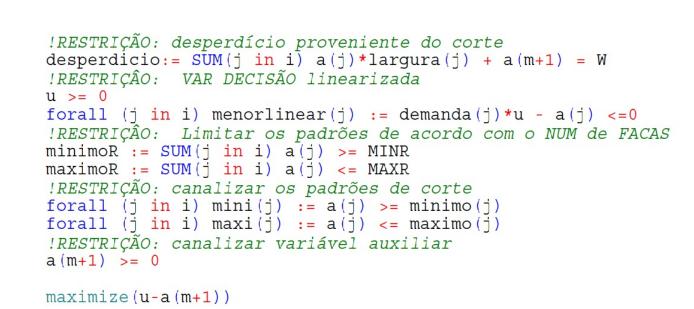


Figura 03 - Heurística implementada no Solver FICO Xpress

• Os resultados obtidos para as distintas classes são apresentados:

		Núm Setup			Desperdício				Excesso de Produção				Desperdício Total				
	m	Menor	Maior	Média	DP	Menor	Maior	Média	DP	Menor	Maior	Média	DP	Menor	Maior	Média	DP
Classe 01	10	3.00	5.00	4.35	0.57	0.00	1.85	0.34	0.40	2.72	20.75	9.00	4.27	2.74	21.06	9.30	4.30
Classe 02	10	5.00	8.00	6.80	0.60	0.01	0.43	0.18	0.13	0.37	1.86	1.03	0.44	0.51	1.92	1.17	0.43
Classe 03	18	5.00	6.00	5.35	0.48	0.00	6.29	0.99	1.74	0.93	8.25	3.95	2.12	1.28	11.41	4.94	2.57
Classe 04	18	7.00	10.00	8.60	0.66	0.02	6.60	2.18	2.15	0.11	1.08	0.59	0.25	0.31	7.39	2.83	2.14
Classe 05	33	8.00	11.00	9.70	0.95	0.00	4.84	1.12	1.51	0.34	4.08	2.30	1.12	0.39	8.48	3.43	2.20
Classe 06	35	12.00	18.00	14.40	1.50	0.03	7.51	1.33	1.67	0.04	0.44	0.27	0.10	0.34	7.75	1.61	1.67
Classe 07	10	7.00	10.00	8.80	1.17	4.12	35.55	18.94	10.21	0.00	3.64	0.87	1.06	5.95	35.55	20.71	9.60
Classe 08	9	8.00	10.00	9.45	0.74	4.52	36.87	15.35	8.81	0.00	0.39	0.09	0.11	4.61	36.95	16.17	8.77
Classe 09	19	12.00	19.00	15.95	1.91	6.14	27.09	15.18	6.09	0.00	0.76	0.18	0.26	6.69	27.82	16.07	6.06
Classe 10	20	16.00	20.00	18.15	1.35	2.61	23.66	12.73	5.70	0.00	0.19	0.06	0.06	2.61	23.68	13.38	5.70
Classe 11	38	25.00	35.00	30.20	2.56	4.84	23.45	15.25	5.51	0.00	0.54	0.05	0.12	4.95	23.45	16.01	5.48
Classe 12	38	32.00	38.00	35.75	1.76	3.13	25.74	13.06	5.53	0.00	0.06	0.02	0.02	3.14	25.74	13.69	5.52
Classe 13	10	7.00	10.00	9.00	0.71	6.92	32.47	19.70	7.53	0.00	2.17	0.79	0.76	7.87	32.96	21.42	7.20
Classe 14	10	9.00	10.00	9.85	0.36	11.16	35.08	21.16	7.08	0.00	0.24	0.06	0.08	11.16	35.08	22.22	7.05
Classe 15	20	14.00	20.00	16.90	1.51	6.25	29.73	16.67	6.41	0.00	0.61	0.16	0.22	6.76	29.73	17.61	6.31
Classe 16	20	17.00	20.00	18.90	1.14	10.57	28.37	18.13	4.15	0.00	0.15	0.02	0.04	10.64	28.37	19.01	4.14
Classe 17	38	28.00	38.00	32.55	2.73	8.61	26.21	15.94	4.07	0.00	0.40	0.07	0.13	8.61	26.21	16.75	4.08
Classe 18	39	33.00	40.00	37.05	1.80	9.36	23.23	14.97	3.91	0.00	0.07	0.02	0.02	9.40	23.26	15.69	3.90

Figura 04 - Tabela de dados com os resultados obtidos

Conclusão

Os dados encontrados, para a mesma classe de problemas indicado por HAESS-LER(1975), são satisfatórios. Entretanto, a partir da experiência obtida durante a fase de implementação da heurística, pode-se concluir que há possibilidade de melhora. Tal informação é baseada no fato de que os desperdícios foram reduzidos após pequenas verificações nos limitantes e nos indicadores de aspiração da heurística.

REFERÊNCIAS E CONTATOS

[1] R. W. Haessler. Controlling Cutting Pattern Changes in One-Dimensional Trim Problems. Operations Research, No. 3, pp. 483-493, 1975.

Contatos:

- Aluno Mateus Martin mateus.pmartin@gmail.com
- Prof. Dr. Antonio Moretti moretti@ime.unicamp.br