

UNICAMP

SISTEMA PILOTO PARA ANÁLISE DO COMPORTAMENTO EXPERIMENTAL DO TRANSIENTE HIDRÁULICO

Mayara de Oliveira Maia Silva – maia.s_mayara@hotmail.com *Orientadora:* Dra. Lubienska Cristina Lucas Jaquiê Ribeiro.

FACULDADE DE TECNOLOGIA

Palavras-Chaves: Transiente Hidráulico, Modelo Experimental, Modelo Matemático.

INTRODUÇÃO

Um dos temas mais complexos em hidráulica refere-se aos fenômenos transitórios. Nos últimos anos o estudo do transitório vem alcançando progressos não só no desenvolvimento de projetos de sistemas hidráulicos, mas também devido às contribuições dos avanços da informática. Com relação aos recursos matemáticos e computacionais atuais a modelação dos escoamentos em sistemas hidráulicos chegou à um estágio de desenvolvimento tal que permite ao projetista calcular, com boa precisão, a maioria dos escoamentos em sistemas hidráulicos., este trabalho realizou uma análise do comportamento experimental do transiente hidráulico através do sistema piloto montado no laboratório de hidráulica da Faculdade de Tecnologia.

METODOLOGIA

Este método consiste num sistema de bombeamento de água a partir de dois reservatórios de 500L cada, e tem como intuito simular estruturas hidráulicas como, por exemplo, uma rede de distribuição de água. Com todos estes elementos (válvulas, bombas, reservatório, medidores de pressão, e outros) consegue-se executar os mais diversos ensaios de um sistema de abastecimento de água, dentre eles o fenômeno de transiente hidráulico.

Figura 1: Instalação da Tubulação de cobre.

Figura 2: Instalação do sensor no sistema piloto.

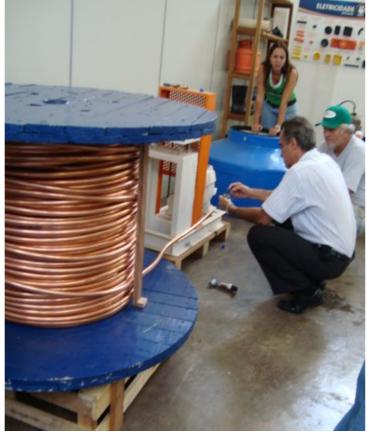


Figura 3 : Piloto sendo montado.

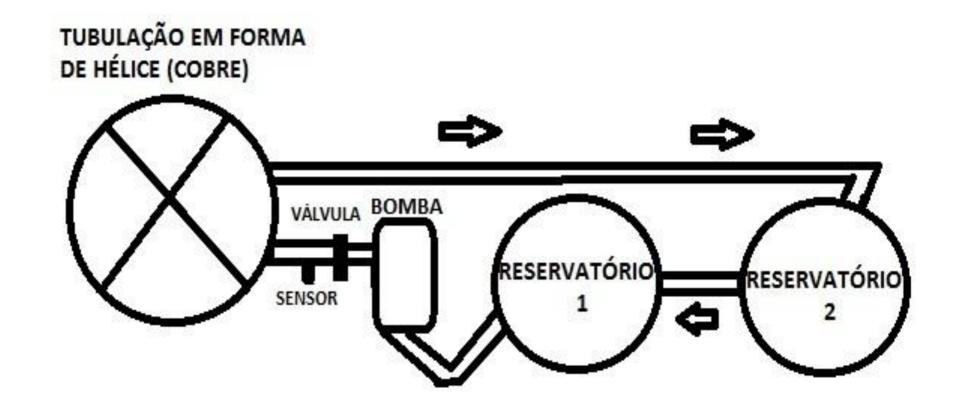
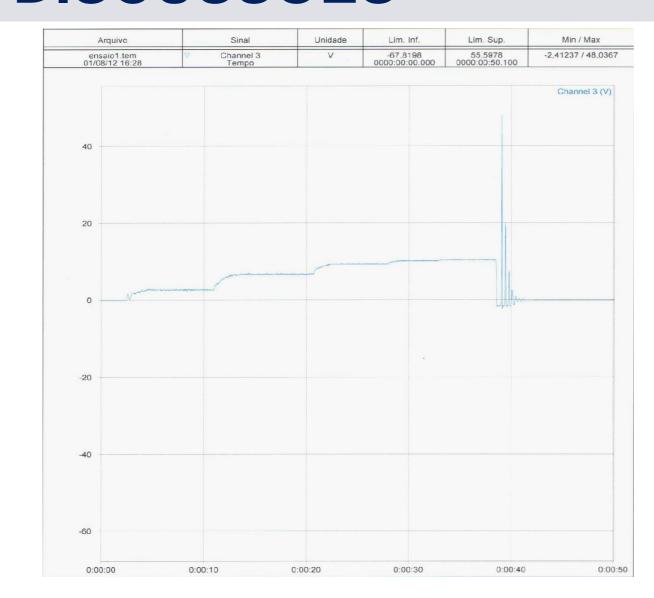


Figura 4: Desenho esquemático do piloto.

A Calibração que a princípio seria realizada com o sensor conectado ao próprio piloto ,devido a problemas com a bomba instalada no piloto a calibração foi realizada em outro sistema hidráulico, deixando o software calibrado em condições para realizar as manobras e coletar dados para análise.


Figura 5 : Microcomputador e equipamento aquisitor instalado.

RESULTADOS E DISCUSSÕES

Figura 6: Piloto em funcionamento.

A cada calibração finalizada, observou-se o valor da correlação entre os dados, validando assim a configuração do sensor.

Gráfico 1: Ensaio com diferentes vazões e golpe de aríete no software AqDados.

Figura 7: Exemplo de correlação

CONCLUSÃO

O imprevisto que ocorreu no decorrer deste trabalho que foi a danificação da bomba que se utilizaria no piloto montado, não impediu que se comprovassem a eficiência do golpe de aríete, dos sensores instalados e do software aquisitor, já que a calibração do sistema, os testes e a demonstração do transiente foram realizados em outro sistema hidráulico, obtendo resultados significativos e o sensores foram calibrados, conforme esperado.

AGRADECIMENTOS

