

SUPERCONDUTORES E ISOLANTES TOPOLÓGICOS:

Férmions de Majorana

Raphael A. Silva e Yakov V. Kopelevich
INSTITUTO DE FÍSICA "GLEB WATAGHIN", UNIVERSIDADE ESTATUAL DE CAMPINAS (UNICAMP)
Agência Financiadora: PIBIC/CNPq

Palavras-chave: Supercondutores – Isolantes – Topológicos

Resumo

No presente trabalho estudamos as propriedades elétricas e magnéticas de ligas de $[Bi_xSb_{(1-x)}]_yZ_{(1-y)}$, sendo Z um elemento dopante, x e y porcentagens estequiométricas dos elementos. O principal objetivo do projeto foi a indução de características supercondutoras nessas ligas. Durante o desenvolvimento das atividades de pesquisa, foram obtidos resultados indicando a presença de supercondutividade em amostras de BiSb dopado com Au. A investigação desses resultados mostrou que a fase supercondutora estava relacionada somente aos elementos Sb e Au. Concentramos nossos estudos em amostras do tipo $Sb_{(1-y)}Au_{(y)}$, com 0 < y < 0.9. Medidas de magnetização mostraram o surgimento de uma transição supercondutora com Tc em torno de 4.5 K, revelando-se um supercondutor do tipo II, com uma fração supercondutora inferior a 0.05 % do volume da amostra. Uma pesquisa na literatura não indicou a existência de um material conhecido composto pelos elementos utilizados que possuísse Tc na vizinhança de 4.5 K.

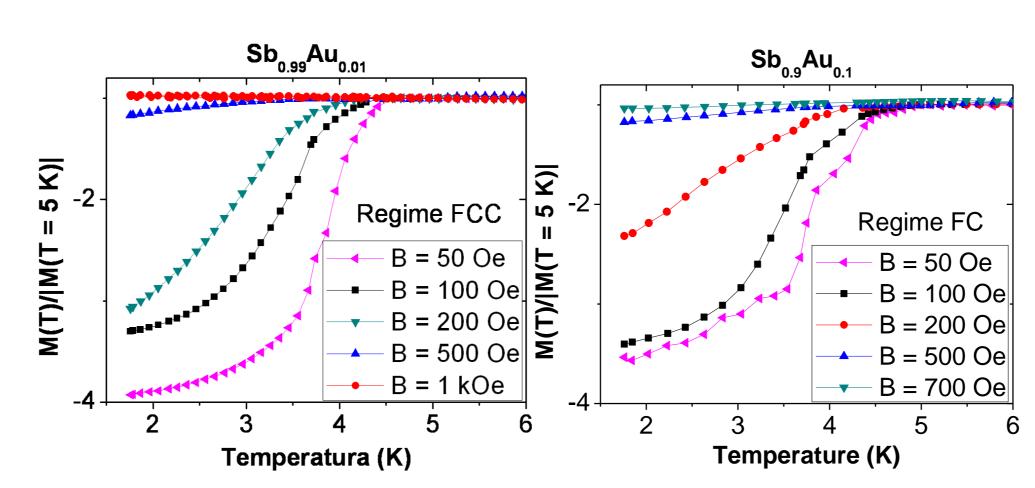
Motivação

- Estudar a possível ocorrência de deslocamento de estados de superfícies topológicas em amostras de Bi_(1-x)Sb_(x) dopadas com Au, baseando-se em recentes trabalhos com amostras de Bi₂Se₃ [M. Ye, arXiv: 1112.5869v1, 26 dec2011].
- Induzir estado de supercondutividade em amostras de $Sb_{(1-y)}$ $Au_{(y)}$, efetuando medidas de susceptibilidade magnética para caracterização.

Metodologia

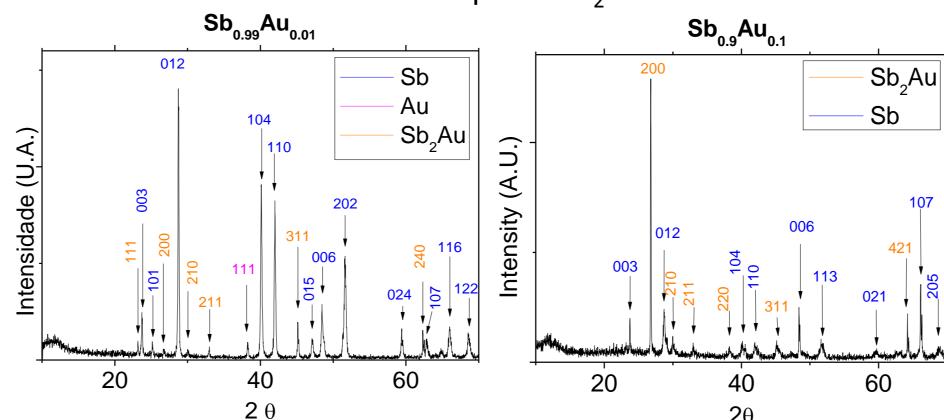
A preparação das amostras consistiu na compactação de grãos de pó dos elementos químicos constituintes da liga $Sb_{(1-y)}Au_{(y)}$, com 0<y<0.9. Essas amostras foram pastilhadas e seladas em tubos de quartzo em atmosfera de argônio e em seguida submetidas a tratamentos térmicos visando a fusão dos elementos para a formação de ligas.

A caracterização das amostras foi feita através de difratometria de raios-X, medidas de susceptibilidade magnética em um magnetômetro SQUID, em temperaturas entre 2 K < T < 300 K e campos de até 7 T. Também foram realizadas medidas de transporte elétrico em um criostato Janis em temperaturas entre 2K<T<300K e campos magnéticos de até 7 T.

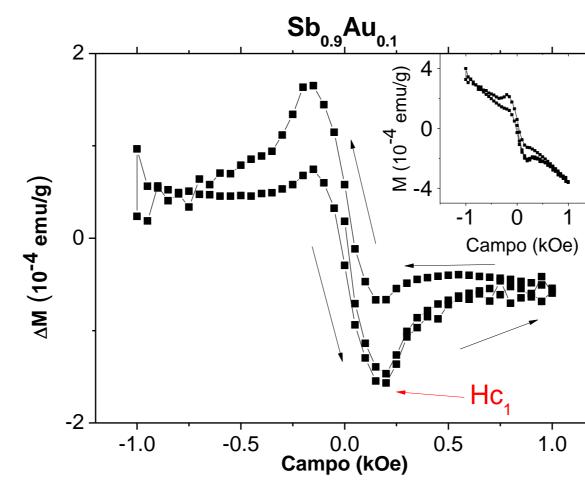

Resultados

Foram encontradas transições supercondutoras nas medidas de susceptibilidade magnética em temperaturas em torno de 4.5 K, em compostos de $\mathrm{Sb}_{(1-y)}\mathrm{Au}_y$, para valores de y < 0.35. O supercondutor tem a assinatura do tipo II, com Hc_2 estimado em torno de 650 Oe. Observou-se uma baixa fração supercondutora nas amostras abaixo dessa porcentagem estequiométrica, não exibindo uma clara dependência com as concentrações de ouro ou mesmo com a presença de ligas metálicas.

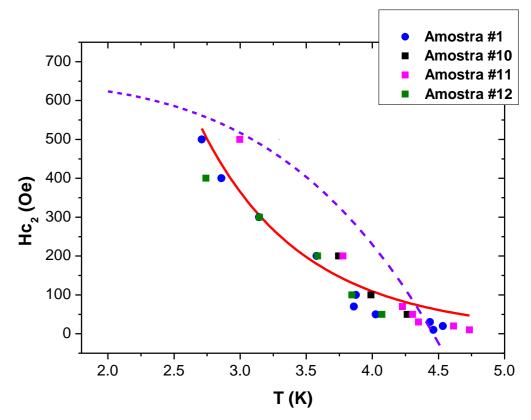
Para o intervalo de concentrações 0.5<y<0.7 foi observada a ocorrência de supercondutividade reentrante entre as temperaturas 3.5<T<4.5K. Para y>0.7, o estado supercondutor é gradativamente suprimido.


Tabela I – Amostras de Sb_(1-v)Au_v

Amostra	Valor teórico de y	Estequiometria		Massa (g)
		Sb	Au	
#1	0.1	0.93	0.07	0.47327
#2	0.2	0.82	0.18	0.48462
#3	0.3	0.73	0.27	0.47548
#4	0.35	0.65	0.35	0.34199
#5	0.4	0.63	0.37	0.47326
#6	0.45	0.54	0.46	0.41556
#7	0.5	0.52	0.48	0.40300
#8	0.7	0.12	0.88	0.43630
#9	0.9	0.1	0.9	0.24010
#10	0.01	0.99	0.01	0.47632
#11	0.1	0.88	0.12	0.44258
#12*	0.01	0.99	0.01	0.42369


Figura 1 − Medidas de magnetização vs temperatura para as amostras $Sb_{0.99}Au_{0.01}$ e $Sb_{0.9}Au_{0.1}$. Para facilitar a visualização, o eixo y foi normalizado pela magnetização em T = 5 K. Os gráficos indicam a presença de uma transição supercondutora com Tc ≈ 4.5K.

A figura 2 apresenta os difratogramas dessas mesmas amostras. Eles mostram os picos característicos do elemento Sb, de Au e da liga Sb₂Au, indicados pelas setas. A fração supercondutora observada nas amostras aparentemente não depende da ocorrência de estruturas cristalinas relacionadas ao composto Sb₂Au.


Figura 2 – Difratogramas das amostras $Sb_{0.99}Au_{0.01}$ e $Sb_{0.9}Au_{0.1}$. Note a presença da

Um loop de histerese realizado em uma temperatura fixa de 2 K pode ser observado no gráfico da figura 3 para a amostra $\mathrm{Sb}_{0.9}\mathrm{Au}_{0.1}$. Nele, observa-se a resposta da magnetização da amostra diante da aplicação do campo magnético, subtraído o background diamagnético linear do material.

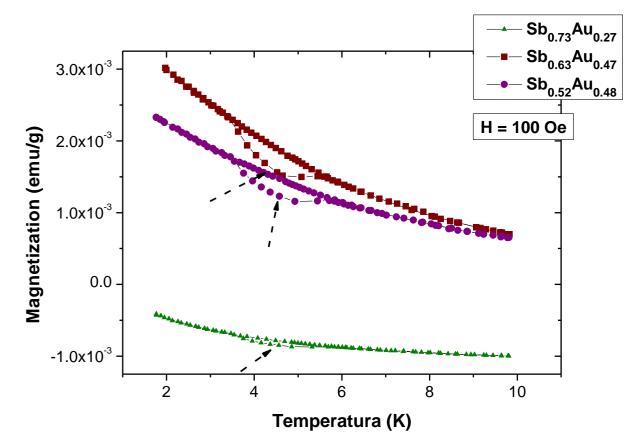


Figura 3 – Curva de ΔM vs H em T = 2K para a amostra de 10% estequiométrico de Au após subtração do background diamagnético; o *inset* do gráfico mostra os dados

Na figura 4 é apresentado um diagrama de fase, construído a partir das medidas de susceptibilidade de quatro amostras (amostras #1, 10, 11 e 12 da tabela 1). Aumentando-se a concentração de Au nas amostras acima de 35%, observa-se o surgimento de uma transição magnética no intervalo de temperaturas 3.5<T<5K, caracterizada pela ocorrência de uma pequena histerese na curva de magnetização (fig.5)

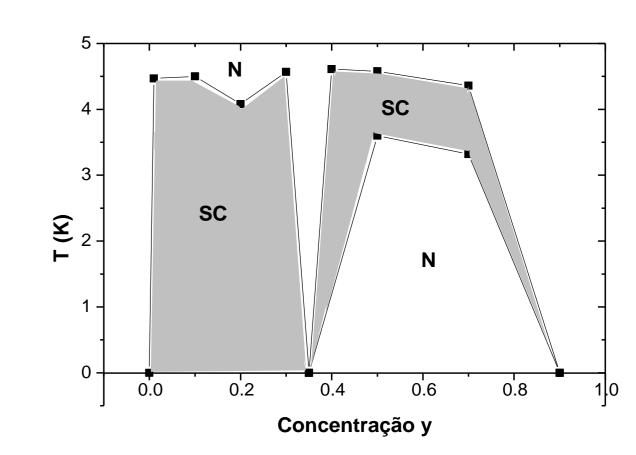


Figura 4 – Diagramas H vs T (temperatura de transição) para as amostras de SbAu medidas. A linha pontilhada define os limites da região supercondutora no diagrama de fase.

Figura 5 – M(T) das amostras #3, #5 e #7 para H = 1T, numa faixa 2K < T < 10K. Ocorre a presença de uma aparente curva de transição magnética em torno de 5K, denotada pela

Abaixo, um novo diagrama de fases condensa todos os resultados obtidos para o composto $Sb_{(1-y)}Au_y$, mostrando Tc em função de y. Vemos a ocorrência de um estado supercondutor para y < 0.35, seguido de uma fase supercondutora reentrante no intervalo 0.5<y<0.7.

Figura 20 – Esboço do diagrama de fases mostrando os intervalos em que a amostra apresenta comportamento supercondutor em função da concentração de Au no material. Os pontos pretos definem resultados experimentais.

Conclusão

- Observação de transição supercondutora em amostras de SbAu, por volta de 4.5 K, para concentrações de y<0.35.
- Assinatura de um supercondutor do tipo II, com $Hc_2 \approx 650$ Oe.
- Ocorrência de supercondutividade reentrante para 0.5 <y<0.7 entre as temperaturas 3.5<T<4.5K.</p>
- Inexistência de correlação clara entre a ocorrência de ligas BiSb e o estado supercondutor: supercondutividade possivelmente devida à interface entre Sb e Au.