Interações estereoeletrônicas e seus efeitos na preferência conformacional de

3-hidroxi e 3-metoxi-tetraidropiranos

Daniela Coelho Solha, Cláudio Francisco Tormena Instituto de química, UNICAMP – Caixa Postal 6154 CEP-13084-862. danicsolha@gmail.com

Introdução

Tem sido observado por nós¹ e por outros grupos² de pesquisa, que a conformação adquirida por uma determinada molécula é função direta dos efeitos estéreo-eletrônicos repulsivos e atrativos presentes nas moléculas em questão. 3-hidroxi-tetraidropiranos substituídos são importantes intermediários para a indústria farmacêutica na preparação de inibidores de quimiocina, bem como para insetos (Lepidoptera: Pyralidae) como feromônio sexual. ³

Objetivos

Avaliar a estabilidade conformacional do 3-hidroxi e 3-metoxitetraidropirano através de RMN e no IV. Apoiados em cálculos teóricos, os quais foram efetuados com nível de teoria DFT/B3LYP e teoria ab initio com o método MP2, empregando as funções de base do tipo aug-cc-pVTZ disponível no Gaussian09, para determinação das energias e geometrias dos confôrmeros mais estáveis. Incluindo a análise de NBO e QTAIM para verificar interações estereoeletrônicas responsáveis pela estabilidade conformacional.

Aspectos experimentais

Figura 2. Equilíbrio das estruturas possíveis para 3-hidroxi e 3-metoxi-tetraidropirano.

Tabela 2. Sinal correspondente ao H_{2ax} e suas constantes de acoplamento ${}^{3}J_{H2H3}$ em diversos solventes.

Resultados e discussões

Aspectos Computacionais

3.45 ppr ³ J _{H2H3} = 5,88 Hz	3.48 3.46 3.44 pl ³ J _{H2H3} = 6,24 Hz	om 3.16 3.14 ${}^{3}J_{H2H3}$ = 7,80 Hz	ppm 3.10 3.08 ${}^{3}J_{H2H3}$ = 8,28 Hz	ppm 2 3.00 ppm ${}^{3}J_{H2H3}$ = 8,52 Hz
				1. 1

Para o 3-hidroxi, o deslocamento do equilíbrio para a conformação equatorial em solventes mais polares é observada pelos ${}^{3}J_{H2axH3}$, valor próximo ao de um acoplamento vicinal *diaxial.* Como ambas as conformações apresentam momentos de dipolo similares, a preferência pela forma eq pode ser atribuída a um aumento da energia da conformação axial. Para o 3-metoxi, não houve variação pronunciada de ${}^{3}J_{H2axH3}$ com a mudança de polaridade do solvente.

Figura 1. Gráfico da energia total obtida para os respectivos ângulos diedros do 3-hidroxi e 3metoxi tetraidropirano com OR em axial e equatorial (R=OH,OCH₃).

Para o 3-hidroxi, as estruturas Ax2 e Ax3 se interconverteram devido à ausência de um poço potencial significativo para Ax3. Além disso, a estrutura Ax2 é considerada a de mais baixa energia. Já para o 3-metoxi, a estrutura de mais baixa energia seria aquela na conformação equatorial, Eq3.

Tabela 1. Valores de energia e momento de dipolo para as estruturas do 3-hidroxitetraidropirano em nível MP2/aug-cc-pVDZ.

Confôrmero	ф ^а	Energia ^b	ΔEc	μ (Debye)
Ax1	-178,7	-346,205	2,13	3,2
Ax2	-38,71	-346,208	0	2,4
Ax3	-38,71	-346,208	0	2,4
Eq1	-67,62	-346,207	0,78	0,4
Eq2	70,38	-346,207	1,04	2,5
Eq3	178,61	-346,207	0,9	2,6

^{a)}ângulo diedro C₂-C₃-O-H; ^{b)}hartrees; ^{c)}kcal mol⁻¹

As interações estereoeletrônicas atrativas e repulsivas foram analisadas pelo QTAIM, mas não foi observado nenhum BCP que caracterizasse a presença de ligação de hidrogênio na estrutura axial para o 3-hidroxi. O cálculo de NBO apresentou uma interação hiperconjugativa LP2O $\rightarrow \sigma^*_{O-H}$ da ordem de 0,68 kcal mol⁻¹. A carga natural do átomo de oxigênio do anel é -0,55437 enquanto que a do hidrogênio do grupo OH é de +0,46055 e a distância entre esses átomos na estrutura de equilíbrio é de 2,331 Å, a qual é menor do que a soma dos raios de van der Waals destes átomos (2,75 Å). A presença de uma interação eletrostática atrativa entre o oxigênio do anel e o grupo OH é o principal contribuinte para a estabilização da conformação axial na fase isolada e em solventes apolares. Contudo, não foi possível comprovar teoricamente a existência da ligação de hidrogênio intramolecular.

Figura 3. Espectro no Infravermelho do 3-hidroxi-tetraidropirano em CCl₄ mostrando as bandas de estiramento da hidroxila, nas concentrações de 0,04 (A), 0,02 (B) e 0,01 mol L⁻¹ (C).

A banda de estiramento OH livre, 3640-3610 cm⁻¹ é deslocada para menores números de onda quando o H apresenta-se ligado a um átomo rico em elétrons. Assim, observa-se dois tipos de ligação de hidrogênio (LH), intra e intermolecular, em 3600-3200 cm⁻¹. A intermolecular é caracterizada pela dependência com a concentração. Consequentemente ocorre a diminuição da intensidade da banda de menor número de onda com a redução da concentração.⁴

Conclusão

Através dos valores das constantes de acoplamento, observou-se a mudança na preferência conformacional para o 3-hidroxi, sendo que em solventes polares o ${}^{3}J_{\text{H2axH3}}$ tem um valor próximo ao vicinal diaxial, caracterizando a preferência pela forma equatorial. Para a molécula 3-metoxi, pelos valores de ${}^{3}J_{\text{H2H3}}$, observou-se que estes não variam com a mudança da polaridade do solvente, evidenciando a preferência da estrutura com o grupo metila na posição equatorial, caracterizada por um acoplamento J_{HH} diaxial.

D.S. Ribeiro, R. Rittner, J. Org. Chem. 68, 6780 (2003).
F. Cortes-Gusman, J. Hernandez-Trujillo, G. Cuevas, J. Phys. Chem. A 107, 9253 (2003).
Y. Sasaerila, R. Gries, G. Gries, G. Khaskin, S. King, S. Takács, Chemoecology, 13, 89 (2003).
R.T. Conley, Infrared Spectroscopy, 2th edition, pg 129-131, (1972).

